30-04-2021



Picasa is a freeware photo organizer software download filed under image viewer software and made available by Google for Windows.

The review for Picasa has not been completed yet, but it was tested by an editor here on a PC and a list of features has been compiled; see below.

Picasa is software that help you instantly find, edit and share all the pictures
  • Filter Cart Viewable at the top right of NDA pages, the Filter Cart is a temporary holder for filters and data they select. Filters are added to the Workspace first, before being submitted to The Filter Cart.
  • PicArrange 2.0 - View and find your images sorted by content and color. Posted by just now. PicArrange 2.0 - View and find your images sorted by content and color. Log in or sign up to leave a comment Log In.
  • . Note Studio. Note-C. NoteApp. NoteBurner M4V Converter Plus. NoteBurner Spotify Music Converter. NoteCase Pro. NotePlan. NoteTaker. Notea. Notebook. Noted. Notenik. Notesey. Notion. Noto - Elegant Note. NounStar Language Study. Nova. Novabench. Nox App Player. Nozbe. Nuendo Live 2.
  • Picture Colorizer is an AI-powered app that colorizes black and white photos, pictures and images automatically. Based on the deep learning technology, Picture Colorizer could help you to convert black & white images to full color and give a new life to your old photos. How to use Picture Colorizer.

PicArrange

Download iTube Studio 7.4 for Mac free latest version. The best app that downloads videos from more than 10,000 websites in high quality. Download ITube Studio 7.4 for Mac Review ITube Studio is a simple tool for ma that allows downloading videos from all popular sites.

Picasa is an image organizer and image viewer for organizing and editing digital photos, plus an integrated photo-sharing website, originally created by a company named Lifescape (which at that time may have resided at Idealab) in 2002 and owned by Google since 2004. 'Picasa' is a blend of the name of Spanish painter Pablo Picasso, the phrase mi casa for 'my house', and 'pic' for pictures (personalized art). In July 2004, Google acquired Picasa from its original author and began offering it as freeware.

Picasa is software that helps you instantly find, edit and share all the pictures on your PC. Every time you open Picasa, it automatically locates all your pictures and sorts them into visual albums organized by date with folder names you will recognize. You can drag and drop to arrange your albums and make labels to create new groups. Picasa makes sure your pictures are always organized.

Picasa is software which can apply special effects to a picture.

Features and highlights

PicardMac arrange‬ windows
  • Includes powerful image searching features
  • Great for organizing photos
  • Provides several helpful image editing utilities
  • Picasa includes image backup solutions
  • Optional Picasa Web Albums similar to Flickr

Picasa 3.9.141.259 on 32-bit and 64-bit PCs

This download is licensed as freeware for the Windows (32-bit and 64-bit) operating system on a laptop or desktop PC from image viewer software without restrictions. Picasa 3.9.141.259 is available to all software users as a free download for Windows.

Filed under:
  1. Picasa Download
  2. Freeware Image Viewer Software
  3. Major release: Picasa 3.9
  4. Photo Organizing Software

Story

A few weeks ago we needed to convert one of our own Tensorflow graphs into a TensorRT network. As many of you probably know, there are a few options to accomplish this, like the Tensorflow to UFF and UFF to TensorRT parser or the Tensorflow to ONNX and ONNX to TensorRT parser. When trying the first approach the following error message was one of many we encountered: UffParser: Validator error: slice_9-26_9-26: Unsupported operation Slice. Some of the problems are circumventable but in the end we had to abandon the UFF to TensorRT parser, since it is full of bugs and closed source. The ONNX way seemed more promising since its intermediate format was visualisable and changeable. Unfortunately the packages provided by Anaconda and PyPI were flawed and fixing the C++ source code felt like a lot of work. Especially since the python API of TensorRT to construct networks looked clean and had all operations we needed.

Goal

The goal now was to develop a converter written in pure python to parse a Tensorflow graph and create a TensorRT network without any intermediate format. The C++ code of the ONNX to TensorRT parser can be used as a reference. A fast testing cycle and easy extendibility were our other concerns for the new library.

Process

In general, the conversion process can be divided into five steps.

  1. Preparing the Tensorflow graph
  2. Parsing the graph definition
  3. Constructing the TensorRT network
  4. Optimizing the network into an engine
  5. Testing the inference result

In step 1 a potential graph is converted into a frozen graph to merge the graph structure and the weights into a single entity. It might be appropriate to strip_unsed nodes and attributes. In step 2 the syntax of the frozen graph can be verified by a parser, and any unknown operations are specified. Step 3 is about verifying the shapes of tensors and if they are supported by TensorRT, since there are quite a few restrictions. Some of the attributes e.g. keep_dims might not be available for specific layers. The optimization process creates a serialized engine that can be used in an execution context of TensorRT to run an inference step. Comparing its results with the output of a Tensorflow graph is crucial to spot eventual low-level implementation differences.

Outcome

Four out of the five steps listed above are covered in our converter. The first step was left out since its realization depends on the input graph. A possible implementation is shown in our example where a ResNet50 is converted. The library itself consists of four files. A tf_parser.py for task 2, a trt_builder.py for task 3, a trt_inference.py for task 4 and a trt_importer.py to do optimization but also connecting the other files in a simple to use API.

  • from_tensorflow_graph_def(…)
  • optimize_network(…)
  • store_engine(…)
  • load_engine(…)
  • inference_engine(…)

Contributions

Pic Manager

Right now the library supports only operations with static shapes. Therefore all shapes need to be known at construction time. Furthermore, several operations are not yet implemented. Some of them are easy to add, others have no TensorRT equivalent and require additional source code to work. We hope together with the machine learning community to fill in missing layers and happily accept pull requests which help to improve the project.

Picard Rangers

Link to the TF2TRT converter:
https://github.com/Visual-Computing/TF2TRT/